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1. Introduction

In this paper we are concerned with stabilizing the classical hierarchical basis (HB) intro-
duced by Yserentant [29] (see also Bank, Dupont and Yserentant [4]) in the finite element
application to second-order elliptic boundary value problems. The proposed method mod-
ifies the hierarchical basis functions by using some approximateL2-projections on each
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104 Panayot S. Vassilevski and Junping Wang

level, yielding a basis which is a close relative to the well-known Battle–Lemarié wavelets
[13].

For simplicity, we illustrate the idea for the elliptic problem which seeksu ∈ H 1
0 (�)

such that
− ∇ · (a(x)∇u) = f (x) in � (1.1)

where� is an open bounded polygonal or polyhedral domain. The coefficient matrixa =
a(x) has bounded and measurable entries, and is assumed to be symmetric and positive
definite over�. The equation (1.1) is discretized by the Galerkin method with continuous
piecewise linear functions. We assume that the finite element triangulation7h is constructed
from a series of successive refinements described as follows. First let70 be an initial coarse
triangulation of�. Then, each7k, k = 1, · · · , J, is obtained from7k−1 by breaking up each
element of7k−1 into a couple of smaller, but congruent elements. Without loss of generality,
this article will deal with the standard uniform refinement. The finite element spaceVh
employed in the Galerkin method corresponds to the partition of� on the finest levelJ so
that7h ≡ 7J . Denote byhk the mesh size for the partition7k. Notice thathk = 2−kh0. Let
Vk denote the finite element space of continuous piecewise linear functions over7k. Finally,
let 1k be the set of nodal points at levelk which consists of all the vertices of elements of
7k and use the two-level hierarchical (direct) node-set decomposition,1k = 1(1)

k ∪ 1k−1.

The stabilized basis functions are of the formψ(k)i ≡ (I − Qa
k−1)φ

(k)
i whereφ(k)i are

hierarchical basis functions at levelk (i.e., associated with the node-set1(1)
k ) andQa

k−1 is
an approximateL2-projection onto the finite element spaceVk−1 with the understanding
thatQa

−1 = 0. Our main result can be stated as follows:

Theorem 1.1. (a) The set of functions{ψ(k)i }i,k forms a basis for the finite element space
Vh. (b) For anyv ∈ Vh, let

v =
∑
xi∈10

c0,iψ
(0)
i +

J∑
k=1

∑
xi∈1(1)

k

ck,iψ
(k)
i (1.2)

be its representation with respect to the approximate wavelet basis{ψ(k)i }i,k and define

|||v|||2 = hd−2
0

∑
xi∈10

c2
0,i +

J∑
k=1

hd−2
k

∑
xi∈1(1)

k

c2
k,i (1.3)

whered = 2 or 3 according to the relation� ⊂ Rd . Assume that the operatorQa
k satisfies

‖(Qk −Qa
k)v‖0 ≤ τ‖Qkv‖0 forallv ∈ L2(�) (1.4)

Then, there exists a constantCR such that

c1|||v|||2 ≤ ‖v‖2
1 ≤ c2|||v|||2

wheneverτ < C−1
R . Herec1 and c2 are two absolute constants and‖ · ‖1 indicates the

standardH 1-norm.
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A Stabilization of the Hierarchical Basis 105

The constantCR in Theorem 1.1 is given by the following estimate

‖(Ik − Ik−1)v‖0 ≤ CR‖v‖0 ∀v ∈ Vk
HereIs represents the standard nodal interpolation operator ontoVs .

As to the implementation, we shall construct preconditioners for the finite element dis-
cretization matrixA(J) by using the block-matrix approach employed by Bank, Dupont and
Yserentant [4], Vassilevski [22], Axelsson and Vassilevski [2]. Details of this approach can
be found in the survey paper by Vassilevski [24].

The mathematical theory for the stabilized hierarchical basis is based on the norm equiva-
lence due to Oswald [19] (see also Dahmen and Kunoth [11], and Bornemann and Yserentant
[5]) and the strengthened Cauchy inequality originated by Yserentant [29]. The argument
adopted in this paper is a refinement of the algebraic (i.e., block-matrix) procedure from
Axelsson and Vassilevski [2] (see also [22,23,24]). A similar block-matrix approach was
later used by Griebel and Oswald [16].

It is interesting to note that the analysis in the spectral estimate for the multiplicative
preconditioner is different from the technique first proposed in Brambleet al. [10] (see
also Wang [27] and Vassilevski and Wang [25]). But the basic elements (see (a.i) and (a.ii)
in section 4.2) for both approaches are the same. The new insight here is the perturbation
analysis presented in section 5; its essence can be found in Lemma 5.1 and the estimate
(5.9).

The results in the present paper can be applied to problems that require only theH 1-
equivalent basis. The Stokes and elasticity equations in fluid dynamics and material science
are two examples with this feature.

We now comment briefly on related approaches. A method, called pre-wavelet space
decomposition, was reported by Kotyczka and Oswald [18] for two-dimensional regular
meshes. For tensor product meshes pre-wavelet space decompositions were also investigated
by Griebel and Oswald in [15]. The results in [18] and [15] have some restrictions on
either the mesh or the analysis. In Stevenson [21] (which is an extension of [20]), essential
progress was made toward more general meshes. More precisely, Stevenson proposed a
direct wavelet-like multilevel decomposition on general meshes which exploits the discrete
L2-orthogonal decompositionVk = Vk−1 ⊕ V 1

k , whereV 1
k admits basis functions that

are linear combinations of three (standard nodal) basis functions ofVk. For recent results
exploiting wavelets in the Galerkin method for solving partial differential equations, see
Dahmen, Kunoth, and Urban [12].

The approach in the present paper is general and applicable to problems wherever the
hierarchical decomposition of the finite element space exists with hierarchical components
having a nodal basis, including spaces corresponding to non-uniformly refined meshes.
The precise statement regarding the mesh non-uniformity can be found in Bornemann and
Yserentant [5].

The paper is organized as follows. In section 2, we present an abstract framework of the
algebraic multilevel preconditioning procedure which extends the two-level block matrix
factorization method of Bank and Dupont [3] (see also Braess [6]). In section 3 we modify
the hierarchical basis by using the exactL2-projection operators. In section 4 we analyze the
spectrum of the corresponding multiplicative preconditioner in the finite element application
for second-order elliptic equations. In section 5 we present a computationally feasible
modification of the hierarchical basis by using some approximateL2-projections. A spectral
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106 Panayot S. Vassilevski and Junping Wang

estimate for the approximate wavelet preconditioners is established in section 5 as well. In
section 6 we show that the stiffness matrix arising from the approximate wavelet basis is
well-conditioned.

2. An abstract framework

In this section we describe a multilevel preconditioning technique for matrices in block
structure. The technique was originated by Bank and Dupont in [3] and Braess [6] as a
two-level procedure. Its analysis and multilevel extensions were later exploited by several
researchers including Axelsson and Gustafsson [1], Bank, Dupont and Yserentant [4], and
Vassilevski [22], [24].

LetV be a Euclidean space of dimensionnequipped with the inner product(·, ·). Consider
the problem of seekingu ∈ V satisfying

Au = b (2.1)

whereA = {
aij
}n
i,j=1 is a symmetric and positive definite matrix. The right-hand side

vectorb is given inV.
Of interest in this paper, we assume that the condition number ofA is large. Our objective

is to find a good preconditioner forA. Then, some iterative methods (e.g., the Jacobi
and conjugate gradient methods) can be employed to yield good approximations of (2.1)
efficiently. This goal will be accomplished by transformingA to a matrix corresponding to
an appropriately chosen basis ofV. The rest of this section is devoted to a detailed discussion
of this preconditioning procedure.

Let = = {y1, y2, . . . , yn} be a new basis forV. Denote, for anyv ∈ V, by v̂ =
(̂v1, v̂2, . . . , v̂n)

T the co-ordinates ofv with respect to the new basis=. Notice thatv =
n∑
i=1

v̂iyi . The matrixY = (y1, y2, . . . , yn) transforms the vector̂v to v as follows:

v = Y v̂ (2.2)

With the help from the transformation matrixY , the problem (2.1) is equivalent to the
seeking of̂u such that

Âû = b̂, with Â = YTAY, b̂ = YTb (2.3)

If the transformed matrix̂A is well conditioned, then a preconditionerB for A can be
constructed by solving (2.3) approximately. More precisely, for anyd ∈ V, the action
B−1d can be computed by the following procedure:

• first find d̂ = Y Td,
• then solvêÂx = d̂ by some simple iterative method (e.g., the Jacobi method),
• denote bŷx the approximation from the preceding step and setB−1d = Yx̂.

The construction of such a desirable basis= is often difficult in practical computations.
In what follows of this section, we present an abstract framework which constructs= using
recursively the two-level technique of Bank and Dupont [3].

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 103–126 (1997)



A Stabilization of the Hierarchical Basis 107

Assume that the linear spaceV can be decomposed as follows:

VJ ≡ V = V1
J ⊕ V2

J (2.4)

Here ‘⊕’ denotes the direct sum of subspaces. For simplicity of notation, we have also
introduced a subscript ‘J ’ since we intend to use successively the same procedureJ ≥ 1
times. Each subspace is assigned an appropriately-chosen basis,

V1
J : =1 = {y1

j ∈ V, j = 1, 2, . . . , k1}
V2
J : =2 = {y2

j ∈ V, j = 1, 2, . . . , k2}

The sets of vectors from=1 and=2 forms a basis ofV. For anyv ∈ V, let v̂ =
[

v̂1
v̂2

]
be the

co-ordinates with respect to the new basis, withv̂1 and̂v2 being the components inV1
J and

V2
J , respectively. The transformation matrixY is, therefore, decomposed asY = [Y1, Y2],

satisfying
Y1̂v1 + Y2̂v2 = v (2.5)

With the above partition, one obtains the following block-form forÂ:

Â = [Y1, Y2]T A [Y1, Y2] =
[
Â11 Â12
Â21 Â22

]
(2.6)

where
Â11 = Y T

1 AY1, Â12 = Y T
1 AY2

Â21 = Y T
2 AY1, Â22 = Y T

2 AY2

It would be unrealistic to assume that the matrixÂ is well conditioned. However, the
submatrixÂ11 might become well conditioned for an appropriately chosen decomposition
(2.4). Thus, we make the following assumption:

A1. There exists a direct decomposition (2.4) and a basis forV1
J so that the submatrix̂A11

is well-conditioned.

The submatrixAJ−1 ≡ Â22 is the block ofA onV2
J , which may not be well conditioned.

This difficulty can be overcome by repeating the above procedure, now applied toVJ−1 ≡
V2
J and the blockAJ−1. Therefore, the procedure will create a direct decomposition:

V = V1
J ⊕ V1

J−1 ⊕ · · · ⊕ V1
1 ⊕ V0 (2.7)

so that the restriction ofA to each subspaceV1
j gives well–conditioned matrices. With

Vj = V1
j ⊕ V2

j andVj−1 ≡ V2
j , whereVJ = V andV0 is a space of relatively small

dimension, the direct decomposition (2.7) can be written recursively as follows:

Vj = V1
j ⊕ Vj−1, j = J, J − 1, . . . ,1 (2.8)

We emphasize that each ofV1
j andVj−1 is equipped with an appropriately-chosen basis

which together form a new basis forVj .
We now construct a sequence of matrices{Aj }; each can be considered as a linear operator

on the subspaceVj for j = 1, 2, . . . , J . Assume thatAj has been constructed onVj . Let
Âj be the representation ofAj with respect to the new basis provided by (2.8) and the
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108 Panayot S. Vassilevski and Junping Wang

given bases ofV1
j andVj−1 (= V2

j ). Similar to (2.6), the matrix̂Aj has the following block
structure:

Âj =
[
Â
(j)

11 Â
(j)

12

Â
(j)

21 Â
(j)

22

]
(2.9)

from which one definesAj−1 ≡ Â
(j)

22 .
The matrixÂj admits the following standard block-Cholesky factorization,

Âj =
[
Â
(j)

11 0

Â
(j)

21 Aj−1 − Â
(j)

21

(
Â
(j)

11

)−1
Â
(j)

12

][
I

(
Â
(j)

11

)−1
Â
(j)

12

0 I

]
(2.10)

For j = 1, 2, . . . , J , let B̂(j)11 be preconditioners tôA(j)11 satisfying some properties to be

specified later (e.g., the relation (3.13) in section 3). By dropping the termÂ
(j)

21

(
Â
(j)

11

)−1
Â
(j)

12

in (2.10), we have a preconditionerBp forA from the following routine inductive procedure
(see Vassilevski [22,23,24] for more information).

Algorithm 2.1. Multiplicative preconditioner Bp ≡ BJ,p First setB0,p = A0. Assume
that a preconditionerBj−1,p for Aj−1 has been constructed. Obtain one forAj as follows:

• Set

B̂j,p ≡
[
B̂
(j)

11 0

Â
(j)

21 Bj−1,p

] [
I B̂

(j)−1

11 Â
(j)

12
0 I

]
(2.11)

• Get a preconditionerBj,p from B̂j,p by changing bases. More precisely, the precondi-
tioner forAj is determined by the equation̂Bj,p = Y TBj,pY , or B−1

j,p = Y B̂−1
j,pY

T (see
(2.6) for details).

The multiplicative preconditionerBp was constructed from the symmetric block Gauss–

Seidel approximation of (2.10) using preconditioners ofÂ
(j)

11 andAj−1. If Âj is approxi-
mated by its block-diagonal part in (2.9), then an additive preconditioner forA is possible.

Algorithm 2.2. Additive preconditioner Ba ≡ BJ,a First setB0,a = A0. Assume the
existence of a preconditionerBj−1,a for Aj−1. Construct one forAj as follows:

• Set

B̂j,a ≡
[
B̂
(j)

11 0
0 Bj−1,a

]
(2.12)

• Obtain a preconditionerBj,a from B̂j,a by changing bases. More precisely, the precon-
ditioner ofAj is determined by the equation̂Bj,a = Y TBj,aY or B−1

j,a = Y B̂−1
j,a Y

T.

Implementations of the additive and multiplicative preconditioners rely on the transfor-
mation matricesYj among the subspaces in the decomposition. Note that we have defined
B̂j,p based onBj−1,p and, in the implementation, we will need the inverse actions ofBj,p.
Based on the identityB−1

j,p = Y B̂−1
j,pY

T we see that these actions are available assuming by

induction that the actions ofB−1
j−1,p are computable. Note also that the inverse actions of
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A Stabilization of the Hierarchical Basis 109

Y andY T are not needed. The same argument applies for the additive preconditionerBj,a .
Details can be found from the second part of this work [26].

It should be pointed out that the decomposition (2.7) must be known prior to the imple-
mentation. Such a decomposition can be constructed by using various techniques which
are often problem–dependent. In particular, one might be able to obtain a computationally
feasible decomposition (2.7) by using properties of the matricesAj only, yielding methods
of algebraic multigrid-type. However, the following four sections shall be devoted to an
investigation of (2.7) for the finite element discretization of (1.1) onstructured gridswhich
are obtained by a series of successive (possibly local) refinements for a given initial coarse
triangulation of the physical domain as sketched in section 1.

3. Wavelet-modified HB preconditioners

We now return to the model problem (1.1) which is discretized by the Galerkin method as
described in section 1. Let1k be the set of nodal points at levelk which consists of all the
vertices of elements of7k. Recall that the refinement procedure generates a sequence of
nested spaces:V0 ⊂ V1 ⊂ · · · ⊂ VJ .

3.1. The hierarchical basis

Each finite element spaceVk has a set of nodal (Lagrangian) basis:

Vk = span{φ(k)i : xi ∈ 1k}

defined byφ(k)i (xj ) = δij whereδij is the standard Kronecker symbol. Let1(1)
k = 1k\1k−1

be the set of new nodal points at levelk, and

V
(1)
k = span{φ(k)i : xi ∈ 1(1)

k } (3.1)

One then has the following direct decomposition:

Vk = V
(1)
k ⊕ Vk−1 (3.2)

which is an analogue of (2.8). The subspaceVk−1 is equipped with the standard nodal basis
over the finite element partition7k−1.

A successive use of (3.2) yields the following HB decomposition forV ≡ VJ :

V = V
(1)
J ⊕ V

(1)
J−1 ⊕ . . .⊕ V

(1)
1 ⊕ V0 (3.3)

The classical multilevel hierarchical basis method (see Yserentant [29] and Bank, Dupont
and Yserentant [4]) is a preconditioning technique based on (3.3). In particular, the method
outlined in section 2 can be applied to yield some multiplicative and additive preconditioners
for the global stiffness matrixA.

The difficulty with the hierarchical basis method is that the corresponding preconditioners
are not spectrally equivalent to the original matrix. This is technically due to the fact that the
interpolation operatorIk : V → Vk, defined byIkv = ∑

xi∈1k
v(xi)φ

(k)
i , is not bounded in

theH 1-norm uniformly with respect to the differenceJ − k → ∞ or the ratio of the mesh
sizeshk/hJ .

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 103–126 (1997)



110 Panayot S. Vassilevski and Junping Wang

3.2. Modified hierarchical bases

Here we propose a general modification for the hierarchical basis. Specific examples with
improved preconditioners will be discussed in next two sections.

Let Mj be bounded linear operators fromL2(�) to the finite element spacesVj for
j = 0, · · · , J . The boundedness is considered as an operator fromL2(�) → L2(�).
Consider the following modification ofV (1)k :

V 1
k = (I −Mk−1)V

(1)
k , k = 1, 2, · · · , J

Lemma 3.1. For each hierarchical basis functionφ(k)i ∈ V (1)k , letψ(k)i = (I−Mk−1)φ
(k)
i .

Then,
0k = {ψ(k)i : ∀xi ∈ 1(1)

k } (3.4)

forms a basis ofV 1
k . Moreover, the following decompositions hold:

Vk = V 1
k ⊕ Vk−1

V = V 1
J ⊕ V 1

J−1 ⊕ · · · ⊕ V 1
1 ⊕ V0

(3.5)

Proof First we show that0k is a set of linearly independent functions. Let{αi} be real
numbers such that ∑

xi∈1(1)
k

αiψ
(k)
i (x) = 0 ∀x

With φ = ∑
xi∈1(1)

k

αiφ
(k)
i ∈ V (1)k , the above leads to

φ(x)−Mk−1φ(x) = 0 ∀x

It follows thatφ = Mk−1φ ∈ Vk−1 ∩ V (1)k = {0}. Thus, we obtainφ ≡ 0 which implies
αi = 0 for all i. This shows that0k is a set of linearly independent functions.

Next since dim(V 1
k ) ≤ dim(V (1)k ) and0k is a linearly independent set, then dim(V 1

k ) =
dim(V (1)k ) and0k forms a basis forV 1

k . Similar arguments can be applied to show that
V 1
k ∩ Vk−1 = {0}, which verifies the validity of the first equality in (3.5). The second one

in (3.5) is merely a by-product of the first.

3.3. Wavelet-modified hierarchical bases

LetQk : L2(�) → Vk be theL2-projection defined by

(Qkv, φ) = (v, φ) ∀φ ∈ Vk (3.6)

where(., .) stands for the standardL2(�)-inner product.
WithMk = Qk, one obtains from Lemma 3.1 a modification of the hierarchical basis. It

follows from the previous section that the modifiedV 1
k is given by

V 1
k ≡ (I −Qk−1)V

(1)
k = (I −Qk−1)Vk = (Qk −Qk−1)V (3.7)

Therefore, the subspacesV 1
k are mutually orthogonal to each other inL2(�). This modified

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 103–126 (1997)



A Stabilization of the Hierarchical Basis 111

hierarchical basis shall be calledwavelet basis(see [13] for more information). The precon-
ditioning methods discussed in section 2 are then applicable to the wavelet decomposition,
yielding somewavelet preconditionersfor the stiffness matrixA.

We now describe an equivalent, but implementation-oriented, approach for the construc-
tion of the wavelet preconditioners. To this end, leta(u, v) ≡ ∫

�
a(x)∇u · ∇vdx be the

bilinear form associated with the elliptic operator in the problem (1.1). The following dis-
cretizations of the elliptic operator are needed:

• The discretization (solution) operatorA(k) : Vk → Vk at levelk defined by

(A(k)v, ψ) = a(v, ψ) ∀v, ψ ∈ Vk (3.8)

Denote byλk the largest eigenvalue ofA(k).
• The discretization operatorA(k)11 : V 1

k → V 1
k in the subspaceV 1

k :

(A
(k)
11 v, ψ) = a(v, ψ) ∀v, ψ ∈ V 1

k (3.9)

Let λ1
k; max andλ1

k; min be the largest and smallest eigenvalues ofA
(k)
11 .

• The communication operatorsA(k)12 : Vk−1 → V 1
k andA(k)21 : V 1

k → Vk−1,

(A
(k)
12 ψ̃, v

1) = a(v1, ψ̃) ∀v1 ∈ V 1
k , ψ̃ ∈ Vk−1

(A
(k)
21 v

1, ψ̃) = a(v1, ψ̃) ∀v1 ∈ V 1
k , ψ̃ ∈ Vk−1

(3.10)

Note thatA(k)12 is theL2–adjoint ofA(k)21 .

Since the decompositionVk = V 1
k ⊕ Vk−1 is direct, one has the following two-by-two

block form for the operatorA(k):

A(k) =
[
A
(k)
11 A

(k)
12

A
(k)
21 A(k−1)

]
} V 1

k

} Vk−1
(3.11)

The decomposition (3.11) can be seen as follows. For anyv, ψ ∈ Vk decomposed as
v = v1 + ṽ andψ = ψ1 + ψ̃ , wherev1 = (I −Qk−1)v ∈ V 1

k , ψ
1 = (I −Qk−1)ψ ∈ V 1

k

andṽ = Qk−1v ∈ Vk−1, ψ̃ = Qk−1ψ ∈ Vk−1, one has

(A(k)v, ψ) = a(v, ψ) = a(v1 + ṽ, ψ1 + ψ̃)

= a(v1, ψ1)+ a(ṽ, ψ1)+ a(v1, ψ̃)+ a(ṽ, ψ̃)

= (A
(k)
11 v

1, ψ1)+ (A
(k)
12 ṽ, ψ

1)+ (A
(k)
21 v

1, ψ̃)+ (A(k−1)ṽ, ψ̃)

=
([
A
(k)
11 A

(k)
12

A
(k)
21 A(k−1)

] [
v1

ṽ

]
,

[
ψ1

ψ̃

]) (3.12)

To construct the wavelet-modified HB preconditioners, we assume the existence of some
given approximationsB(k)11 , which are symmetric and positive definite inV 1

k , to the operators

A
(k)
11 , k = 1, 2, . . . , J . We also assume the validity of the following spectral equivalence:

(A
(k)
11 v

1, v1) ≤ (B
(k)
11 v

1, v1) ≤ (1 + b1)(A
(k)
11 v

1, v1) ∀v1 ∈ V 1
k (3.13)
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112 Panayot S. Vassilevski and Junping Wang

Hereb1 > 0 is an absolute constant independent ofk andJ . In practical implementation,
B
(k)
11 can simply be chosen as a diagonal matrix.

Algorithm 3.1. Wavelet-modified multiplicative HB preconditioner LetB(0) = A(0). For
k = 1, . . . , J define

B(k) =
[
B
(k)
11 0

A
(k)
21 B(k−1)

][
I B

(k)−1

11 A
(k)
12

0 I

]

Note that one solution withB(k) requires two solutions with each of the approximations
B
(s)
11 , s = 1, 2, . . . , k, one action with each ofA(s)12 andA(s)21 , s = 1, 2, . . . , k and a coarse-

grid solution withA(0). The additive preconditioner can be defined as in (2.12).
We point out that the wavelet basis functionsψ(k)i ≡ (I − Qk−1)φ

(k)
i are not locally

supported in� which causes a difficulty in implementing the wavelet basis. To overcome
this difficulty, Jaffard [17] suggested the use of FFT in order to compute the expansion of
functions. But this approach imposes some restriction on the mesh structure. There has been
a different approach by Oswald (see section 4.2 in [19]) which, for some special cases of
the partition, constructs a new basis forV 1

k with local support. In conclusion, the subspace
V 1
k is not a desirable choice in the multilevel preconditioning method based on the matrix

blocksA(k)11 , A
(k)
12 , andA(k)21 . A remedial procedure is presented in section 5 in which the

subspaceV 1
k will be replaced by a small perturbation of itself in order to have a set of

locally-supported basis.

4. Spectral analysis

Here we analyze the preconditionerB(k) by refining the argument of Vassilevski [23] and
[22].

4.1. A general result

LetE(k) ≡ B(k) −A(k) be the difference betweenA(k) and its preconditionerB(k). For any
v ∈ Vk with v = v1 + ṽ, wherev1 ∈ V 1

k and ṽ ∈ Vk−1, one has from (3.12) and some
elementary computation that

(E(k)v, v) = (B(k)v, v)− (A(k)v, v)

= ((B
(k)
11 − A

(k)
11 )v

1, v1)+ (E(k−1)ṽ, ṽ)+ (B
(k)−1

11 A
(k)
12 ṽ, A

(k)
12 ṽ)

(4.1)

The operatorE(k) is positive semi-definite. In fact, this is true fork = 0 becauseE(0) = 0.
Assume thatE(s) is positive semi–definite ons < k. It follows from (4.1) and (3.13) that
(E(k)v, v) ≥ 0 for all v ∈ Vk.

An upper bound forE(k) can be derived by using (3.13) and two inequalities to be
specified later. First, using (3.13) in (4.1) one obtains

(E(k)v, v) ≤ b1(A
(k)
11 v

1, v1)+ (E(k−1)ṽ, ṽ)+ (B
(k)−1

11 A
(k)
12 ṽ, A

(k)
12 ṽ)
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In general, ifv(s) ∈ Vs has the decomposition

v(s) = v(s)
1 + v(s−1), v(s)

1 ∈ V 1
s , v

(s−1) ∈ Vs−1 (4.2)

then
(E(s)v(s), v(s))− (E(s−1)v(s−1), v(s−1))

≤ b1 (A
(s)
11v

(s)1, v(s)
1
)+ (B

(s)−1

11 A
(s)
12v

(s−1), A
(s)
12v

(s−1))

Summing overs yields (withv = v(k))

(E(k)v, v) ≤ b1

k∑
s=1

(A
(s)
11v

(s)1, v(s)
1
)+

k∑
s=1

(B
(s)−1

11 A
(s)
12v

(s−1), A
(s)
12v

(s−1))

Thus, an upper bound can be derived forE(k) if the following two inequalities can be
established.There exist two constants%1 and%2 both independent ofk such that

k∑
s=1

(A
(s)
11v

(s)1, v(s)
1
) ≤ %1(A

(k)v, v) (4.3)

and
k∑
s=1

(B
(s)−1

11 A
(s)
12v

(s−1), A
(s)
12v

(s−1)) ≤ %2(A
(k)v, v) (4.4)

for all v ∈ Vk.
We emphasize thatv(s)

1
andv(s−1) are determined by (4.2) withv(k) = v. To summarize,

the following result has been proved:

Theorem 4.1. If (3.13), (4.3) and (4.4) hold true, then the following is valid for the pre-
conditionerB(k)

(A(k)v, v) ≤ (B(k)v, v) ≤ (b1%1 + %2)(A
(k)v, v) ∀v ∈ Vk (4.5)

The spectral estimate (4.5) is a general result for the multiplicative preconditioner intro-
duced in section 2. The result is based on three inequalities which must be established for
each spatial decomposition (2.7).

4.2. An application to the wavelet basis

Our objective is to establish the inequalities (4.3) and (4.4). The argument is based on
two fundamental inequalities in the multilevel theory. Namely, there exists a constantσ

independent ofk satisfying

(a.i) ‖Q0v‖2
1 +

k∑
j=1

h−2
j ‖(Qj −Qj−1)v‖2

0 ≤ σ‖v‖2
1 ∀v ∈ Vk

and
(a.ii)

∣∣a(ψi, ψj )∣∣2 ≤ σδ2(j−i)h−2
j a(ψi, ψi)‖ψj‖2

0, ∀ψi ∈ Vi, ψj ∈ Vj , j ≥ i, where
δ ∈ (0, 1) is a constant given by the upper bound of the ratiohi/hi−1 for i = 1, . . . , J .

Here and in what follows,‖·‖s denotes the norm in the Sobolev spaceHs(�) for s = 0, 1.
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The inequality (a.i) was proved in Oswald [19] (see also [5,11]) and (a.ii) was originally
seen in Yserentant [30] (see also [7,25,28]). The following result confirms (4.3).

Lemma 4.1. Assume that (a.i) holds true. There exists a constantC such that

k∑
s=1

(A
(s)
11v

(s)1, v(s)
1
) ≤ C (A(k)v, v) ∀v ∈ Vk (4.6)

Proof For the wavelet basis decomposition, one has from (4.2) that

v(s−1) = Qs−1v
(s) and v(s)

1 = v(s) − v(s−1)

Thus,
v(s) = QsQs+1 · · ·Qkv = Qsv, v

(s)1 = (Qs −Qs−1)v

It follows from the inverse inequality and (a.i) that

k∑
s=1

(A
(s)
11v

(s)1, v(s)
1
) ≤ C

k∑
s=1

h−2
s ‖v(s)1‖2

0

= C

k∑
s=1

h−2
s ‖(Qs −Qs−1)v‖2

0 ≤ Ca(v, v)

which completes the proof of the lemma.

The following result will be used to verify the validity of (4.4).

Lemma 4.2. If (a.i) and (a.ii) hold true, then there exists a constantC such that

k∑
s=1

h2
s‖A(s)12v

(s−1)‖2
0 ≤ Ca(v, v) ∀v ∈ Vk (4.7)

Proof First by using (3.10) and (3.8) one has

‖A(s)12v
(s−1)‖2

0 = a(v(s−1), A
(s)
12v

(s−1)) = (A(s)v(s−1), A
(s)
12v

(s−1))

Thus, by using the Schwarz inequality

‖A(s)12v
(s−1)‖2

0 ≤ ‖A(s)v(s−1)‖2
0

Introduce the operatorTj = h2
j A

(j). Hence,

h2
s‖A(s)12v

(s−1)‖2
0 ≤ h2

s‖A(s)v(s−1)‖2
0 = a(Tsv

(s−1), v(s−1)) (4.8)

By using the decomposition

v(s−1) ≡ Qs−1v =
s−1∑
j=0

(Qj −Qj−1)v ≡
s−1∑
j=0

v(j)
1
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one obtains

a(Tsv
(s−1), v(s−1)) =

s−1∑
j=0

a(Tsv
(s−1), v(j)

1
) (4.9)

Now using the strengthened Cauchy inequality (a.ii) (note thatj < s),∣∣∣a(Tsv(s−1), v(j)
1
)

∣∣∣2 ≤ σ 2δ2(s−j)h−2
s a(v(j)

1
, v(j)

1
)‖Tsv(s−1)‖2

0

= σ 2δ2(s−j)h2
s a(v

(j)1, v(j)
1
) ‖A(s)v(s−1)‖2

0

= σ 2δ2(s−j) a(v(j)1, v(j)1) a(Tsv(s−1), v(s−1))

Therefore, substituting the above into (4.9) yields

a(Tsv
(s−1), v(s−1)) ≤ σ 2

[
s−1∑
j=0

δs−j
[
a(v(j)

1
, v(j)

1
)
] 1

2

]2

Applying the Cauchy–Schwarz inequality one obtains

a(Tsv
(s−1), v(s−1)) ≤ σ 2 δ

1 − δ

s−1∑
j=0

δs−j a(v(j)
1
, v(j)

1
)

Summing overs leads to the following

k∑
s=1

a(Tsv
(s−1), v(s−1)) ≤ σ 2 δ

1 − δ

k∑
s=1

s−1∑
j=0

δs−j a(v(j)
1
, v(j)

1
)

≤ σ 2
(

δ

1 − δ

)2 k−1∑
j=0

a(v(j)
1
, v(j)

1
)

which together with (4.6) and (3.9) implies

k∑
s=1

a(Tsv
(s−1), v(s−1)) ≤ C(A(k)v, v) ∀v ∈ Vk

The lemma is thus verified by combining the above inequality with (4.8).

The following useful result, which is a reformulation ofA1 in section 2, will be proved
in section 6.1.

Lemma 4.3. If λ1
k, min andλ1

k, max are the smallest and largest eigenvalues ofA
(k)
11 , then

there exist constantsC1 andC2 both independent ofhk such that,

C1h
−2
k ≤ λ1

k; min ≤ λ1
k; max ≤ C2h

−2
k

Consequently, the matrixA(k)11 is well conditioned.

We are now in a position to verify the inequality (4.4). Observe that from Lemma 4.3 the
matrixA(s)11 is well conditioned. Thus, one may choose a diagonal preconditionerB

(s)
11 =
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αh−2
s I for the matrixA(s)11 . Hereα is a parameter which should be adjusted so that (3.13) is

satisfied for someb1. With the above selection ofB(s)11 , it is trivial to see that

k∑
s=1

(B
(s)−1

11 A
(s)
12v

(s−1), A
(s)
12v

(s−1)) ≤ C

k∑
s=1

h2
s‖A(s)12v

(s−1)‖2
0 ≤ C(A(k)v, v)

where we have used (4.7) in the last inequality. The general case forB
(s)
11 satisfying (3.13)

can be treated similarly sinceB(s)
−1

11 is spectrally equivalent toα−1h2
s I . This verifies the

validity of (4.4). The result can be summarized as follows:

Theorem 4.2. If the inequalities (a.i) and (a.ii) hold true, then there exists a constant
C > 0 independent ofk such that

(A(k)v, v) ≤ (B(k)v, v) ≤ C(A(k)v, v) ∀v ∈ Vk
for k = 0, 1, . . . , J . The constantC depends only onb1 from (3.13),δ from (a.ii), andσ
from (a.i), (a.ii).

It should be pointed out that the validity of (a.ii) relies on some regularity assumption for
the coefficient matrixa = a(x) of (1.1). Thus, the estimate (4.7) is not known for the elliptic
equation (1.1) with arbitrarya(x). Without assuming (a.ii), one can derive the following
straightforward sub-optimal estimate:

Lemma 4.4. If (a.i) holds true, then there exists a constantC such that

k∑
s=1

h2
s‖A(s)12v

(s−1)‖2
0 ≤ Ck a(v, v) ∀v ∈ Vk (4.10)

Proof From (4.8) we get

k∑
s=1

h2
s‖A(s)12v

(s−1)‖2
0 ≤

k∑
s=1

a(Tsv
(s−1), v(s−1)) (4.11)

SinceTs = h2
sA

(s) and the largest eigenvalue ofA(s) is proportional toh−2
s , then there

exists a constantC such that

a(Tsv
(s−1), v(s−1)) ≤ C‖v(s−1)‖2

1 = C‖Qs−1v‖2
1 ≤ C‖v‖2

1 (4.12)

where we have used the fact that theL2 projection operatorQs−1 is bounded inH 1(�).
Substituting (4.12) into (4.11) yields (4.10).

Theorem 4.3. If the inequality (a.i) holds true, then there exists a constantC > 0 inde-
pendent ofk such that

(A(k)v, v) ≤ (B(k)v, v) ≤ C(1 + k) (A(k)v, v) ∀v ∈ Vk
for k = 0, 1, . . . , J . The constantC depends only onb1 from (3.13),σ from (a.i), and the
H 1-norm of theL2-projection operatorQs for s = 1, · · · , k.
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Proof It suffices to verify the conditions of Theorem 4.1. The inequalities (3.13) and (4.3)
were already proved in Lemmas 4.3 and 4.1. The validity of (4.4) was concluded by Lemma
4.4 with%2 = Ck.

Based on a more refined analysis due to Griebel and Oswald [16], the following result
can be proved:

Theorem 4.4. If the inequality (a.i) holds true, then there exists a constantC > 0 inde-
pendent ofk such that

(A(k)v, v) ≤ (B(k)v, v) ≤ C(1 + log2(1 + k)) (A(k)v, v) ∀v ∈ Vk
for k = 0, 1, . . . , J . The constantC depends only onb1 from (3.13),σ from (a.i), and the
H 1-norm of theL2-projection operatorQs for s = 1, . . . , k.

5. Approximate wavelet bases and preconditioners

In this section we present a computationally feasible modification of the hierarchical basis
by approximating theL2-projectionsQs . To this end, letQa

s be a bounded linear operator
that approximates the exactL2-projectionQs in the sense that there exists a small (but
fixed) τ > 0 satisfying

‖(Qa
s −Qs)v)‖0 ≤ τ‖Qsv‖0 ∀v ∈ V (5.1)

In practical computation, the approximation operatorQa
s is given as a polynomial of the

Gram matrix associated withVs . Details will be given in the second part of the paper.
With Mj replaced byQa

j in section 3.2, one obtains a modified hierarchical basis as a
perturbation of the wavelet basis. Such a basis is calledapproximate wavelet basisin this
paper. It follows from Lemma 3.1 that the approximate wavelet basis is given by

0k = {ψ(k)i ≡ (I −Qa
k−1)φ

(k)
i : ∀xi ∈ 1(1)

k , k = 0, 1, · · · , J }

where{φ(k)i } is the set of the hierarchical basis functions. Also, one has from (3.5) that

V = V 1
J ⊕ V 1

J−1 ⊕ · · · ⊕ V 1
1 ⊕ V0

with V 1
k = (I −Qa

k−1)V
(1)
k . Each subspaceV 1

k is equipped with the following basis:

0k = {ψ(k)i ≡ (I −Qa
k−1)φ

(k)
i : ∀xi ∈ 1(1)

k }

The corresponding preconditioners can be constructed by repeating the procedure dis-
cussed in section 2 or section 3.3. A spectral analysis can be established along the way
presented in section 4. Details follow in the rest of this section.

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 103–126 (1997)



118 Panayot S. Vassilevski and Junping Wang

5.1. Preconditioners

Consider the space

V 1
k ≡ (I −Qa

k−1)V
(1)
k = (I −Qa

k−1)(Ik − Ik−1)Vk

and introduce the operatorsA(k)11 : V 1
k → V 1

k ,A(k)12 : Vk−1 → V 1
k , andA(k)21 : V 1

k → Vk−1

by using the same formulas (3.8)–(3.10). Then, the matrixA(k) admits a two-by-two block
form (3.11), with now a different spaceV 1

k . Following the spirit of the Algorithm 2.1, one can

construct a corresponding preconditionerB(k) by using approximationsB(k)11 to the operators

A
(k)
11 . Assume that the spectral equivalence (3.13) holds true for those approximations with

a constantb1 ≥ 0, independent ofJ andk.

5.2. Spectral estimates

The general result in Theorem 4.1 can be employed to yield some spectral estimates for the
approximate wavelet preconditioner. The key point here is to verify its conditions (3.13),
(4.3) and (4.4) in this application.

Notice that anyv(s) ∈ Vs admits the following unique decomposition:

v(s) = v(s)
1 + v(s−1) (5.2)

where
v(s)

1 = (I −Qa
s−1)(Is − Is−1)v

(s) ∈ V 1
s ≡ (I −Qa

s−1)V
(1)
s

v(s−1) = Qa
s−1v

(s) + (I −Qa
s−1)Is−1v

(s) ∈ Vs−1
(5.3)

The above relation provides the termsv(s)
1

andv(s−1) in (4.3) and (4.4) withv(k) = v ∈ Vk.
Let es = v(s) −Qsv be the deviation ofv(s) fromQsv. SinceQa

s is an approximation
of Qs , it is reasonable to believe that the deviationes can be essentially neglected in the
argument. The following lemma provides a rigorous estimate on this perturbation.

Lemma 5.1. One has the following identity:

es−1 = [Qs−1 + Rs−1]es + Rs−1(Qs −Qs−1)v (5.4)

whereRs−1 = (Qs−1 −Qa
s−1)(Is−1 − Is).

Proof It can be seen that

es−1 = v(s−1) −Qs−1v

= (Qs−1 −Qa
s−1)Is−1v

(s) +Qa
s−1v

(s) −Qs−1v

= (Qs−1 −Qa
s−1)Is−1(v

(s) −Qsv)+Qa
s−1(v

(s) −Qsv)

+(Qs−1 −Qa
s−1)Is−1Qsv +Qa

s−1Qsv −Qs−1Qsv

= (Qs−1 −Qa
s−1)Is−1es +Qa

s−1Ises+Qs−1(Is−1Qsv −Qsv)−Qa
s−1(Is−1Qsv −Qsv)

= (Qs−1 −Qa
s−1)(Is−1 − Is)es + (Qs−1 −Qa

s−1)es +Qa
s−1es+(Qs−1 −Qa

s−1)(Is−1 − Is)Qsv

= [
Qs−1 + (Qs−1 −Qa

s−1)(Is−1 − Is)
]
es

+(Qs−1 −Qa
s−1)(Is−1 − Is)Qsv
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This together with the fact that(Is−1 − Is)Qs−1 = 0 completes the proof of the lemma.

Using now (5.1) and theL2-boundedness of the nodal interpolation operatorsIs−1 :
Vs → Vs−1 we arrive at

‖Rs−1v‖0 ≤ CRτ‖v‖0 ∀v ∈ Vs (5.5)

for some constantCR. It follows from (5.4) and (5.5) that

‖es−1‖0 ≤ (1 + CRτ)‖es‖0 + CRτ‖(Qs −Qs−1)v‖0 (5.6)

From now on we assume thatτ is sufficiently small such that

CRτ ≤ q1 = Const< 1 (5.7)

It is then trivial to see that

(1 + CRτ)
1

2
≤ q = 1 + q1

2
= Const< 1 (5.8)

Observe thatek = 0. Then, a recursive use of (5.6) leads to

‖es−1‖0 ≤ CRτ

k∑
j=s

(1 + CRτ)
j−s‖(Qj −Qj−1)v‖0

Therefore, withhj = 1
2hj−1,

‖es−1‖0 ≤ CRτhs−1

k∑
j=s
(1 + CRτ)

j−sh−1
s ‖(Qj −Qj−1)v‖0

= CRτhs−1

k∑
j=s
(1 + CRτ)

j−sh−1
s hjh

−1
j ‖(Qj −Qj−1)v‖0

= CRτhs−1

k∑
j=s
(1 + CRτ)

j−s
(

1
2

)j−s
h−1
j ‖(Qj −Qj−1)v‖0

≤ CRτhs−1

k∑
j=s

qj−sh−1
j ‖(Qj −Qj−1)v‖0

≤ CRτhs−1
1√
1−q

[
k∑
j=s

qj−sh−2
j ‖(Qj −Qj−1)v‖2

0

] 1
2

The last inequality shows

k∑
s=1

h−2
s−1‖es−1‖2

0 ≤ C2
Rτ

2 1
1−q

k∑
s=1

k∑
j=s

qj−sh−2
j ‖(Qj −Qj−1)v‖2

0

≤ C2
Rτ

2 1
(1−q)2

k∑
j=1

h−2
j ‖(Qj −Qj−1)v‖2

0

(5.9)

The above inequality will turn out to be very useful in the spectral analysis.
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We point out that Lemma 4.3 is valid for the operatorA
(k)
11 obtained from the approximate

wavelet basis. Thus, it is preferable to choose a diagonal preconditionerB
(s)
11 = αh−2

s I for

A
(s)
11 , whereα should be adjusted to satisfy (3.13).

Lemma 5.2. If (a.i) is valid andτ is sufficiently small (but fixed), then (4.3) holds true for
some constant%1.

Proof The componentv(s)
1

is given by (5.3). Since

v(s)
1 = v(s) − v(s−1) = es +Qsv − es−1 −Qs−1v

then
‖v(s)1‖0 ≤ ‖(Qs −Qs−1)v‖0 + ‖es‖0 + ‖es−1‖0 (5.10)

Notice that
k∑
s=1

(A
(s)
11v

(s)1, v(s)
1
) ≤ C

k∑
s=1

h−2
s ‖v(s)1‖2

0

Thus, from (5.10)

k∑
s=1

(A
(s)
11v

(s)1, v(s)
1
) ≤ C

k∑
s=1

h−2
s (‖(Qs −Qs−1)v‖0 + ‖es‖0 + ‖es−1‖0)

2

≤ C

k∑
s=1

h−2
s ‖(Qs −Qs−1)v‖2

0 + C

k−1∑
s=0

h−2
s ‖es‖2

0

≤ C(τ)

k∑
s=0

h−2
s ‖(Qs −Qs−1)v‖2

0 ≤ Ca(v, v)

Here we have used the estimates (5.9) and (a.i). This completes the proof of the lemma.

Lemma 5.3. If (a.i) and (a.ii) are valid andτ is sufficiently small (but fixed), then (4.4)
holds true for some constant%2.

Proof With the choice ofB(s)
1

11 = αh−2
s I , one has

k∑
s=1

(B
(s)−1

11 A
(s)
12v

(s−1), A
(s)
12v

(s−1)) ≤ C

k∑
s=1

h2
s‖A(s)12v

(s−1)‖2
0

Using the inequality prior to (4.8) and the fact thatv(s−1) = es−1 +Qs−1v one obtains

k∑
s=1
(B

(s)−1

11 A
(s)
12v

(s−1), A
(s)
12v

(s−1)) ≤ C
k∑
s=1

h2
s‖A(s)v(s−1)‖2

0

≤ C
k∑
s=1

h2
s

(‖A(s)es−1‖2
0 + ‖A(s)Qs−1v‖2

0

)
≤ C

k∑
s=1

h−2
s−1‖es−1‖2

0 + C
k∑
s=1

h2
s‖A(s)Qs−1v‖2

0

(5.11)
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The first sum in the last line of (5.11) can be estimated by using (5.9) and (a.i), yielding

k∑
s=1

h−2
s−1‖es−1‖2

0 ≤ Ca(v, v)

The second sum in the last line of (5.11) has been estimated in Lemma 4.2. This completes
the proof of the lemma.

To summarize, the following main result has been proved:

Theorem 5.1. LetB(k) be the approximate wavelet preconditioner constructed by using
Algorithm 2.1 or 3.1.

1. In addition to (a.i) and (a.ii), assume that the approximateL2-projectionsQa
k are suf-

ficiently close to the exactL2-projectionsQk so that (5.1) is valid with the constraint
(5.7). Then,B(k) is spectrally equivalent to the operatorA(k).

2. Without assuming the inequality (a.ii), the preconditionerB(k) is nearly spectrally equiv-
alent to the solution operatorA(k) for sufficiently smallτ . More precisely, an analogue
of Theorem 4.3 or Theorem 4.4 holds true.

6. Stability analysis

Our objective in this section is to show that the finite element discretization matrix for the
second-order elliptic operator is well-conditioned with respect to the approximate wavelet
basis. A spectral estimate for the additive preconditioner will be presented as well.

6.1. Some norm equivalence

The goal here is to verify the well-conditionedness of the matrixA
(k)
11 that was claimed in

Lemma 4.3 for the wavelet and approximate wavelet bases. Let us first establish a norm
equivalence for the modified hierarchical basis functions discussed in section 3.2.

Lemma 6.1. LetV 1
k = (I −Mk−1)V

(1)
k be the modified hierarchical subspace of levelk.

Then, there are constantsc1 andc2 independent ofk such that for anyψ1 = (I−Mk−1)φ
1 ∈

V 1
k , withφ1 ∈ V (1)k ,

c1‖φ1‖2
i ≤ ‖ψ1‖2

i ≤ c2‖φ1‖2
i , i = 0, 1 (6.1)

Recall that‖.‖s stands for the norm in the Sobolev spaceHs(�), s = 0, 1.

Proof The following strengthened Cauchy inequality is valuable: there exists a constant
γ ∈ (0, 1), independent of the mesh size or the level indexk such that

(∇φ1,∇φ̃) ≤ γ (∇φ1,∇φ1)
1
2 (∇φ̃,∇φ̃) 1

2 , ∀φ1 ∈ V (1)k , φ̃ ∈ Vk−1 (6.2)

In fact, we shall make use of the following version of (6.2):

(∇(φ1 + φ̃),∇(φ1 + φ̃)) ≥ (1 − γ 2)(∇φ1,∇φ1), ∀φ1 ∈ V (1)k , φ̃ ∈ Vk−1 (6.3)
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A derivation of (6.2) and (6.3) can be found from Bank and Dupont [3], Braess [6] or
Axelsson and Gustafsson [1].

We first establish (6.1) for the casei = 1. With φ̃ = −Mk−1φ
1 we see from (6.3) that

(1 − γ 2)‖φ1‖2
1 ≤ ‖ψ1‖2

1

Thus, the inequality on the left-hand side of (6.1) is valid withc1 = 1 − γ 2. To derive the
part on the right-hand side, we use the standard inverse inequality to obtain

‖ψ1‖2
1 ≤ Ch−2

k ‖ψ1‖2
0 ≤ Ch−2

k ‖φ1‖2
0

where we have used theL2-boundedness of the linear operatorMk−1. Observe now that
sinceφ1 ∈ V (1)k , there exists a constantC such that

‖φ1‖2
0 ≤ Ch2

k‖φ1‖2
1 (6.4)

It follows that‖ψ1‖2
1 ≤ C‖φ1‖2

1 for some constantC. This completes the proof of (6.1) for
i = 1. Similar arguments can be applied to verify the casei = 0.

Proof (Proof of Lemma 4.3) For anyψ1 = (I −Mk−1)φ
1 ∈ V 1

k , since

(A
(k)
11ψ

1, ψ1) = a(ψ1, ψ1)

and the bilinear forma(·, ·) is equivalent to theH 1-inner product, then there are positive
constantsτi such that

τ1‖ψ1‖2
1 ≤ (A

(k)
11ψ

1, ψ1) ≤ τ2‖ψ1‖2
1

Using the norm equivalence (6.1), (6.4) and the inverse inequality we obtain with other
positive constants̃τi ,

τ̃1h
−2
k ‖φ1‖2

0 ≤ (A
(k)
11ψ

1, ψ1) ≤ τ̃2h
−2
k ‖φ1‖2

0

The above inequalities verify the validity of Lemma 4.3.

6.2. TheH 1-stability of the approximate wavelet basis

For anyv ∈ V let

v =
∑
xi∈10

c0,iφ
(0)
i +

J∑
k=1

∑
xi∈1(1)

k

ck,i(I −Qa
k−1)φ

(k)
i (6.5)

be its representation with respect to the approximate wavelet basis. The corresponding
coefficient norm ofv is given by (1.3). Our main result in this section is the following norm
equivalence:

Theorem 6.1. There exists a small (but fixed)τ0 > 0 such that if the approximate wavelet
basis satisfies (5.1) withτ ∈ (0, τ0), then there are constantsc1 andc2 satisfying

c1|||v|||2 ≤ ‖v‖2
1 ≤ c2|||v|||2 ∀v ∈ V (6.6)
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From now on, the above equivalence relation will be abbreviated as|||v|||2 ' ‖v‖2
1.

Proof We first rewrite (6.5) as follows:

v =
J∑
k=0

v(k)
1

(6.7)

where, withQa
−1 = 0,

v(k)
1 =

∑
xi∈1(1)

k

ck,i(I −Qa
k−1)φ

(k)
i ∈ V 1

k (6.8)

Furthermore, by lettingφ(k) = ∑
xi∈1(1)

k

ck,iφ
(k)
i ∈ V (1)k we see thatv(k)

1 = (I −Qa
k−1)φ

(k).

Thus, by using (6.1) in Lemma 6.1 (withi = 0 andMk−1 = Qa
k−1) we obtain

‖φ(k)‖2
0 ' ‖v(k)1‖2

0 (6.9)

Sinceφ(k) ∈ V (1)k , then
‖φ(k)‖2

0 ' hdk

∑
xi∈1(1)

k

c2
k,i

Combining the above with (6.9) yields

|||v|||2 '
J∑
k=0

h−2
k ‖v(k)1‖2

0

This, together with Lemma 6.2 below, completes the proof of the lemma.

Lemma 6.2. Let v andv(k)
1

be related as in (6.7), (6.8). If the condition of Theorem 6.1
is satisfied, then

‖v‖2
1 '

J∑
k=0

h−2
k ‖v(k)1‖2

0 (6.10)

Proof The proof of Lemma 5.2 also shows that

J∑
k=0

h−2
k ‖v(k)1‖2

0 ≤ C‖v‖2
1

Thus, it suffices to establish the following inequality:

‖v‖2
1 ≤ C

J∑
k=0

h−2
k ‖v(k)1‖2

0 (6.11)

For the inner product
b(v,w) ≡ (∇v,∇w)

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 103–126 (1997)



124 Panayot S. Vassilevski and Junping Wang

the following analogue of (a.ii) is valid,∣∣b(ψi, ψj )∣∣2 ≤ σδ2(j−i)h−2
j b(ψi, ψi)‖ψj‖2

0 ∀ψi ∈ Vi, ψj ∈ Vj , j ≥ i

which, based on the inverse inequality gives,

|b(ψi, ψj )| ≤ C
√
σδ(j−i)h−1

j h−1
i ‖ψi‖0 ‖ψj‖0 ∀ψi ∈ Vi, ψj ∈ Vj , j ≥ i

Substituting the above into‖v‖2
1 = b(v, v) = ∑J

j,k=0 b(v
(j)1, v(k)

1
) yields,

‖v‖2
1 ≤ C

J∑
j,k=0

√
σδ|j−k|h−1

j h−1
k ‖v(j)1‖0 ‖v(k)1‖0

≤ C
√
σ

(
J∑

j,k=0

δ|j−k|h−2
j ‖v(j)1‖2

0

) 1
2
(

J∑
j,k=0

δ|j−k|h−2
k ‖v(k)1‖2

0

) 1
2

= C
√
σ

J∑
j,k=0

δ|j−k|h−2
j ‖v(j)1‖2

0

≤ C
√
σ

1 + δ

1 − δ

J∑
j=0

h−2
j ‖v(j)1‖2

0

The last inequality verifies (6.11) and, therefore, completes the proof of the lemma.

Remark 1. One can alternatively use the following characterization of theH 1
0 -norm of the

finite element spaceV due to Oswald [19]:

‖v‖2
1 ' inf

v=
J∑
k=0

vk, vk∈Vk

J∑
k=0

h−2
k ‖vk‖2

0

Therefore, for the particular decompositionv = v(0) +
J∑
k=1

v(k)
1
, one immediately gets the

desired upper estimate (6.11).

Since the two bilinear formsa(·, ·) andb(·, ·) are equivalent, then we have from (6.6)
that

c1|||v|||2 ≤ a(v, v) ≤ c2|||v|||2 (6.12)

for some constantsc1 andc2. The equivalent relation (6.12) can be re-interpreted as follows:

Theorem 6.2. If the conditions of Theorem 6.1 hold true, then the matrix representation
of a(·, ·) by using the approximate wavelet basis is well-conditioned.
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6.3. On the additive preconditioner

The additive preconditioner corresponding to the approximate wavelet basis was defined in
section 2 (see Algorithm 2.2). It can also be interpreted by the following quadratic form:

(Bav, v) ≡
J∑
s=1

(B
(s)
11 v

(s)1, v(s)
1
)+ (A(0)v(0), v(0))

wherev(s)
1

is the component ofv ∈ V in the subspaceV 1
s (see equations (6.5) and (6.5a),

(6.5b) for more detail).

Theorem 6.3. If the conditions of Theorem 6.1 hold true, then the additive preconditioner
Ba is spectrally equivalent to the global stiffness matrixA for the bilinear forma(·, ·).
Proof Recall that each preconditionerB(s)11 is a matrix that is spectrally equivalent to the
diagonal matrixh−2

s I . Thus,

(Bav, v) '
J∑
s=0

h−2
s ‖v(s)1‖2

0

The above equivalence along with (6.10) asserts the conclusion of the theorem.
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